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a b s t r a c t

A pipelining algorithm to overcome the limitation on scaling quasi-static particle-in-cell
models of relativistic beams in plasmas to a very large number of processors is described.
The pipelining algorithm uses multiple groups of processors and optimizes the job alloca-
tion on the processors in parallel computing. The algorithm is implemented on the quasi-
static code QuickPIC and is shown to scale to over 103 processors and increased the scale
and speed by two orders of magnitude over the non-pipelined model. The new approach
opens the door to performing full scale 3D simulations of future plasma wakefield acceler-
ators or full lifetime models of beam interaction with electron clouds in circular accelera-
tors such as the Large Hadron Collider (LHC) at CERN.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Electron clouds in large circular accelerators and particle acceleration in plasma wakefield are examples of nonlinear
beam–plasma interactions where a large range of timescales are involved. Electron cloud (e-cloud) has been observed in
many circular proton and positron machines, where spurious electrons are generated and accumulated inside the pipe
and lead to beam instabilities. The built-up electron cloud interacts with the beam particles during 103–104 turns and causes
beam degradation [1–3], such as emittance growth, beam size blowup, beam loss and tune shift. In addition, plasma wake-
field acceleration for both particle beam and laser drivers has attracted a great deal of interest recently [4]. Much of this
interest is in a regime in which plasma electrons are evacuated by the intense electron or laser drive beam and then pulled
back by the stationary ions, forming a spherical accelerating structure. Self-trapped or externally injected electron beam
needs to propagate 103–106 plasma wavelengths to reach the desired energy.
. All rights reserved.
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In both of these applications a short ‘‘beam” (electrons, positrons, protons, or photons) propagate through a long region of
plasma or electron cloud. The ‘‘beam” evolves very slowly compared to the time it takes the ‘‘beam” to pass by a plasma par-
ticle, which enables the frozen field or quasi-static approximation. QuickPIC is a fully parallelized particle-in-cell (PIC) code
based on the quasi-static approximation. With this approximation, the three-dimensional (3D) full Maxwell’s equations are
not solved in the full 3D PIC code such as OSIRIS, but instead the electromagnetic fields are obtained by solving two-dimen-
sional (2D) quasi-static equations [5] shown below,
�r2
?/ðx; y; s; nÞ ¼ 4pqðx; y; s; nÞ ð1Þ

� r2
?
~Aðx; y; s; nÞ ¼ 4p~Jðx; y; s; nÞ=c ð2Þ
where / and ~A are scalar potential and vector potential in the Lorentz gauge, and q and~J are the charge density and current
density, respectively. With the quasi-static approximation, the coordinates are transformed from (x, y, z, t) to (x, y,s = z,n
= ct � z), where z is the coordinate for the propagation direction and x, y are the transverse coordinates, c is the speed of light.
s measures the propagation distance and corresponds to the time scale over which the beam evolves. n measures the position
relative to the beam and corresponds to the time scale over which the plasma or the electron cloud evolves as they interact
with the beam. Eqs. (1) and (2) are solved by treating s as a parameter, and using n as a time-like variable.

The 2D quasi-static equations are solved with spectral solvers using Fast Fourier Transform (FFT). The 2D routine starts
with initialization of an unperturbed plasma or electron cloud slab in x–y plane, and advances it through the simulation box
slab by slab by increasing n. The 2D routine updates the positions and the velocities of the plasma or e-cloud particles as well
as solves the electromagnetic field. The 2D calculation cannot be performed on all slabs simultaneously but sequentially
since each slab is updated from its previous one, except the first slab. There are two different modes of the quasi-static
approximation in QuickPIC: full quasi-static and basic quasi-static, and they are used to model the plasma wakefield accel-
eration experiments [4] and the electron cloud beam interaction in circular machines [6], respectively. The full quasi-static
approximation includes the axial plasma current. This current is important for the plasma wakefield modeling because the
plasma electrons move at relativistic speeds. Detailed description of the QuickPIC algorithm with the full quasi-static
approximation is described in Ref. [5]. In the electron cloud case, the cloud electrons move at non-relativistic speeds, and
they are modeled by the basic quasi-static approximation where the axial current is ignored. Eqs. (1) and (2) are further re-
duced to 2D scalar Poisson equations for /and Az(Az is the z component of the vector potential), in the basic quasi-static
approximation [7]. For the simulation of the e-cloud problem, the electron cloud is distributed all over the ring and interacts
with the beam continuously [8]. Betatron and synchrotron oscillations of the beam particles are also included as an external
force term (~Fext in Fig. 1) added to the equation of motion of the beam particles. This captures the effect of the external quad-
rupole magnets and RF fields of the accelerators [6].

Compared to full PIC codes such as OSIRIS, QuickPIC speeds up the computation by 2–5 orders of magnitudes with the
frozen field or quasi-static approximation. The CPU time saving mainly comes from two multiplicative factors: (i) the re-
duced total number of particle pushes of the wake calculation and (ii) the usage of large 3D time steps [5]. But in order
to simulate a multi-TeV Plasma Wakefield Accelerator (PWFA) stage or the beam–electron cloud interaction over a real beam
life span in a circular accelerator, a much faster and more efficient program is needed. For example, using 16 processors, it
takes QuickPIC about five days to simulate LHC beam–electron cloud interaction during 500 turns, which corresponds only to
about 44 ms in real time. However, this is still much shorter than the beam lifetime of 30 min [9]. In QuickPIC much of the
computation is spent in the 2D field solver. Simply increasing the number of processors used in the simulation does not fur-
ther reduce the computational cost, since the transposes in the FFT and the communication of field data among processors
become more and more time-consuming for a fixed problem size. In order to overcome this limit, a novel algorithm, the
pipelining algorithm, is described here and implemented into QuickPIC. The pipelining algorithm makes it possible to use
up to 103 processors, and to accelerate the computational speed of the simulations by a corresponding factor.

2. The QuickPIC algorithm

Despite the differences in the 2D field solvers between the full and the basic quasi-static modes of QuickPIC, the program
structure of both modes prior to the implementation of the pipelining algorithm remains the same. Because it is much
Fig. 1. Outer loop of the QuickPIC code, the electric (E) and magnetic (B) fields are calculated in the quasi-static field solver.
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simpler, we use the basic quasi-static mode for the e-cloud problem to illustrate the original algorithm and the addition of
the pipelining algorithm in QuickPIC. We will point out the differences between the pipelining algorithms for these two
modes when they arise. In addition, while QuickPIC can model both laser and particle drivers for wakefield acceleration, only
the particle beam driver case has been pipelined. Pipelining the laser driver case requires additional work on the laser ad-
vance and this will be done at a future date. However, the pipelining of the plasma solver does not change.

The QuickPIC simulation of the interaction between the beam and the electron cloud starts from the initialization of the
beam and the electron cloud particles in a simulation box that travels at the initial speed of the beam (in the PWFA simu-
lation, the simulation box travels at the speed of light). The positions and velocities of the beam particles are initialized with
a Gaussian random number generator in order to account for beam size and emittance. The electron cloud particles are ini-
tialized with a uniform distribution. The beam–electron cloud interaction is calculated through a loop. For each step of the
loop, the computational cycle is broken up into four parts as shown in Fig. 1 [10]. First, from the information of the beam
particle positions and velocities, the current and charge densities on the grids are derived. Second, the electromagnetic field
on the grids is determined by a series of 2D field solvers based on the quasi-static approximation, starting from the head of
the beam and proceeding to the tail. In carrying out these field solves, the fields from the first 2D solve are used to push the
cloud (or plasma) particles with a standard leap frog pusher and the new cloud density is passed to and used in the next 2D
solve. Third, the field is then used to calculate the force on the beam particles. Fourth, the beam particles are pushed using a
standard leap frog technique and the updated positions and velocities are deposited. The cycle repeats until the desired num-
ber of time steps is reached.

The domain decompositions of the beam and the electron cloud in QuickPIC are illustrated in Fig. 2 [11]. The beam is di-
vided into equal space domain in the longitudinal or axial (z) direction. The 2D electromagnetic field calculation is carried
out on a series of slabs in the transverse plane (x–y plane) with a fully parallelized spectral solvers using FFT. The electron
cloud is decomposed evenly in the y direction on each slab.

3. Pipelining algorithm

In the original QuickPIC, the 2D field calculation is performed on successive slabs of the beam beginning at the head. For
those beam particles located in the 2D slabs at the front for which the field calculation has been performed, all the informa-
tion to continue to the 3D pusher has been obtained. Those beam particles can be pushed immediately while the 2D field
calculation continues on the rest of the slabs, so there is no waiting for the 2D calculation to be completed on all slabs. This
introduces the basic idea of the pipelining algorithm. We now describe the algorithm in detail.

3.1. Domain decomposition of pipelining algorithm

In the implementation of the pipelining algorithm, the processors are divided into N subgroups, instead of working as one
big group, as in the original QuickPIC. The decompositions also need to be changed accordingly. Fig. 3 shows the domain
decomposition used for the pipelining algorithm. The beam is evenly divided into N slabs in the longitudinal direction,
and each slab is allocated to one subgroup. Within each subgroup, the beam is further decomposed evenly in slabs in the
longitudinal direction, which are assigned to each processor in the subgroup. For the electromagnetic field calculation,
the 2D slab is decomposed in the transverse y direction based on the number of processors in each subgroup. Each subgroup
performs 2D field calculation on the 2D slabs only within its own 3D domain, instead of on the whole simulation box.

3.2. Advantage of pipelining algorithm

During the decompositions, the domain of each processor must contain at least one cell in the decomposed direction. The
current implementation of QuickPIC uses 1D domain decompositions in the y direction for the 2D field solver, and in the z-
Fig. 2. Domain decomposition for the QuickPIC for the 2D and 3D calculations.



Fig. 3. Domain decomposition used in pipelining (two subgroups of processors and 4 processors per subgroup).
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direction for the beam pusher. For the non-pipelined QuickPIC, the number of cells Ny in the y-direction puts an upper limit
on the total number of processors that can be used. Moreover, if too many processors are used, the communication among all
the processors, particularly during the 2D field calculation becomes so intensive that it detracts from the time saving of par-
allel computing with multiple processors. This effect reduces the upper limit to f � Ny, where f is platform dependent and
0 < f < 1.

The pipelining algorithm utilizes multiple subgroups of processors. Within each subgroup, the number of processors used
is still limited by f � Ny. However, since one can use multiple subgroups of processors, the total number of processors can be
scaled up to f � Ny � N, where N is the number of subgroups, speeding up the simulation and/or improving the resolution of
the simulation by a corresponding factor. Currently the 1D (in z) decomposition strategy in the 3D beam pusher in the pipe-
lined version of QuickPIC practically limits the total number of processors to be Nz, i.e. the number of cells in the z-direction.
However, this limit can be increased to f � Ny � Nz with a 2D (in both y and z) decomposition strategy in the beam pusher (or
f
0 � Nx � Ny � Nz if 3D decomposition is used, and usually 0 < f

0
< f < 1) in conjunction with the pipelining algorithm. This

upper limit is comparable to the theoretical upper bound (Ny � Nz for 2D decomposition or Nx � Ny � Nz for 3D decomposi-
tion) on the number of processors that can be efficiently used for a fixed problem.

3.3. Pipelining algorithm

The pipelining algorithm starts with the parallel computing environment set up. All the processors to be used are divided
into N subgroups. Each processor is labeled with the group ID representing the subgroup it belongs to, and a rank within its
subgroup.
Fig. 4. Pipelining algorithm for QuickPIC. The beam moves from left to right. Four subgroups are used in this case. The boxes represent the domains for each
subgroup, and are labeled with the group ID. The blue blocks are the parts of the Gaussian beam in the domain of the subgroup. The vertical labels are the
wall clock times in units of execution time of a step in a subgroup; the horizontal labels are the beam propagation distances. The head and the tail of the
beam at the same wall clock time are at different locations along the propagation trajectory. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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The calculation starts with the beam initialization on all the processors of all the subgroups. After that, the first subgroup
starts the 2D field calculation routine with the initialization of uniform electron cloud. The 2D slab is advanced through the
part of the beam in the domain of the first subgroup. At this stage, the other subgroups are idling. After the 2D calculation is
done, the first subgroup sends the results of the last slab to the second subgroup (Fig. 4(a)), which is necessary for the second
subgroup to start its 2D calculation. Now that the second subgroup is performing the 2D field calculation, the first subgroup
moves on to push the part of the beam within its domain and then deposits the beam charge density. Since some of the beam
particles may be pushed out of the domain of a subgroup, each subgroup communicates with the adjacent subgroup(s) to
transfer the beam particles into the new domain if necessary. The first subgroup is then ready for the computation of the
next time step. Meanwhile, the second subgroup finishes the 2D field calculation and starts the 3D beam push. Then the third
subgroup begins the calculation of 2D field calculation of the first time step (Fig. 4(b and c)). All the subgroups repeat the
same procedure until the desired number of time steps are achieved.

In summary, if N subgroups are used, it takes about (N � 1) time steps to fill up the pipe. In the full pipe, the Kth subgroup
is always approximately a half time step ahead of the (K + 1)th subgroup (Fig. 4(d)). The number of particles of e-cloud (or
plasma) is the same for all the slabs, so e-cloud (or plasma) update for each slab takes roughly the same time (there is indeed
a load balance issue concerning the number of particles in each processor in a particular subgroup, but this would not affect
the pipeline operation). The number of beam particles does vary significantly among subgroups, and the beam update only
consists of a very small fraction of the total computation time, and pipeline stall has never occurred.

3.4. Inter-subgroup communication

There are several situations that involve communication among the subgroups: (a) in the 2D field calculation, the last
electron slab needs to be passed to the next subgroup, so that the next subgroup can start the 2D field calculation from
the received slab; (b) after the 3D beam push, beam particles that move out of the original domain, due to synchrotron oscil-
lation or acceleration/deceleration from the wake, need to be sent to the other subgroups.

During the pipelining process, subgroup K is always approximately a half step ahead of subgroup (K + 1). If the commu-
nication occurs backward in the direction from head to tail, i.e. from subgroup K to subgroup (K + 1), after subgroup K sends
out the information, the information can be stored in a buffer and subgroup K can move on to the next part of computation;
subgroup (K + 1) picks up the information whenever it is ready to receive it. Obviously, backward communication does not
interrupt the computational flow and preserves the time saving benefit of the pipelining algorithm.

The other communication direction is forward, i.e. from tail to head. The information is sent from subgroup (K + 1) to sub-
group K. Since subgroup K is ahead of subgroup (K + 1), when subgroup K is ready to receive, it has to stop and wait for sub-
group (K + 1) to be ready to send. This basically synchronizes the computational progress on subgroups K and K + 1. The
waiting time involved could diminish the time saving benefit of the pipelining algorithm.

Situation (a) mentioned above only involves backward communication. For situation (b), and in the electron cloud case,
the simulation box is chosen to move at the initial speed of the beam along the center trajectory. Because of the presence of
accelerating RF fields in accelerators beam particles gain or lose energy depending on their phase with respect to the RF
wave. Particles with higher momentum tend to travel along a larger orbit than particles with the design momentum and
hence slip backward relative to the particles moving with the design momentum. Conversely, particles with lower momen-
tum travel along a smaller orbit and may move faster than the simulation box. It is thus possible for beam particles to move
out of their original domain during the particle push, through either boundary in the longitudinal direction. Both backward
and forward inter-subgroup communications are required to reallocate those particles to the new domain. Note that in the
case of modeling the beam propagation in a PWFA or the laser propagation in a LWFA, the speed of the moving simulation
box is chosen as the speed of light, therefore one only needs to consider the backward communication, which can be easily
handled in the pipelining algorithm.

In order to solve the problem induced by the forward communication, the timing of the communication is changed. For
beam–electron cloud instability simulations with QuickPIC, the 3D time step is chosen to resolve the betatron oscillation
wavelength (kb), and typically corresponds to kb/30. In most cases, the synchrotron oscillation frequency is much smaller
than the betatron frequency, so that
ðv th þxsLBÞDs <
Dn
2

ð3Þ
is satisfied. Here vth is the thermal velocity of the beam, xs is the frequency of the synchrotron oscillation, LB is the length of
the simulation box in z, Ds is the 3D time step, and Dn is the cell size in longitudinal (z) direction. Eq. (3) guarantees that only
the particles within the D n distance from the boundary of the group domain can possibly travel to the domain of another
subgroup, and the particles cannot move to a subgroup that is not adjacent to its current subgroup since for each 3D time
step, the particles displacement in z-direction is less than Dn/2. So, if there are particles from subgroup (K + 1) that need to be
sent to subgroup K, there is no need for subgroup K to wait until the 3D beam pusher is completely done on all the particles
in the domain of subgroup K + 1. Instead, the beam particles are sorted, and all the particles to be sent can be gathered after
the 3D push of the particles within Dn distance from the boundary between subgroup K and subgroup (K + 1). After the com-
munication, subgroup K moves on to the next step 2D field calculation and subgroup K + 1 continues the rest of the beam
push. This keeps the computational flow of the pipelining algorithm and effectively limits the waiting time.
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4. Performance of the pipelining algorithm

4.1. Fidelity of the pipelining algorithm

The goal of pipelining algorithm is to speed up the simulation without losing the accuracy of the original QuickPIC code.
To check that the pipelined version of QuickPIC reproduced the results of the original version, long-term simulation of
12,000, 3D time steps were performed. These simulations represent 300 turns of LHC beam propagation with the parameters
of Table 1.

As shown in Fig. 5, the spot size obtained with and without the pipelining algorithm overlap perfectly in both transverse
directions, and the difference is less than 0.5%. Both show the onset of electron cloud instability in the vertical plane at
approximately 280 turns. This indicates that the pipelining algorithm preserves the physics modeled in the original QuickPIC
code.
Table 1
Simulation parameters for LHC at CERN.

Horizontal spot size (mm) 0.884
Vertical spot size (mm) 0.884
Bunch length (m) 0.115
Horizontal box size (mm) 18
Vertical box size (mm) 18
Bunch population 1.1 � 1011
Momentum spread 4.68 � 10-4
Beam momentum (GeV/C) 4.796 � 108
Circumference (km) 26.659
Horizontal betatron tune 64.28
Vertical betatron tune 59.31
Synchrotron tune 0.0059
Horizontal vertical chromaticity 2, 2
Electron cloud density (cm�3) 6 � 105
Total cell number 128 � 128 � 128
Total beam particles 128 � 128 � 256
e-Cloud particles per cell 2 � 2

Fig. 5. Horizontal (left graph) and vertical (right graph) beam spot sizes obtained with and without pipelining using QuickPIC in the basic quasi-static
mode. Perfect overlap is observed.

Table 2
Simulation parameters for the computational efficiency test of full quasi-static approximation (plasma wakefield calculation for an electron drive beam).

Horizontal spot size (lm) 7
Vertical spot size (lm) 7
Bunch length (lm) 45
Bunch population 1.8 � 1010

Relativistic factor 55800
Plasma length (cm) 15.04
Plasma density (cm�3) 2.0 � 1016

Horizontal box size (lm) 600
Vertical box size (lm) 600
Box length (lm) 500
Total cell number 256 � 256 � 1024
Total beam particles 128 � 128 � 512
Plasma particles per cell 2 � 2
3D time step (1/xp) 22.5
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Test of the pipelining algorithm in the full quasi-static mode of QuickPIC also confirms the fidelity of the algorithm. Again,
a typical PWFA simulation was carried out with and without the pipelining algorithm. This simulation models the propaga-
tion of an intense electron beam in an underdense plasma with the parameters specified in Table 2. Eight processors were
used in the baseline simulation in which pipelining was turned off. Since the simulation box contains 1024 grid cells in the
longitudinal direction, for the pipelining algorithm we were able to use 128 subgroups, each with 8 processors. The results
from both the baseline and pipelined simulations show excellent agreement, as seen in Fig. 6, with the difference in beam
density less than 0.3%.
Fig. 6. Electron beam densities in PWFA simulations at the 150th time step, with the original QuickPIC (left figure) and with pipelining algorithm (right
figure). The beam moves downward in these figures.

Fig. 7. Comparison of the computation speedup between pipelining and non-pipelining versions of the QuickPIC code. (a) Speedup for QuickPIC with basic
quasi-static approximation (the vertical axis shows the speedup over the original QuickPIC using 4 processors). (b) Speedup for QuickPIC with full quasi-
static approximation, normalized to the simulation time with 1 subgroup with 8 processors.



Table 3
Simulation parameters for the computational efficiency test of basic quasi-static approximation (modeling of beam and electron cloud interaction).

Horizontal and vertical spot size (mm) 0.884, 0.884
Bunch length (mm) 115
Bunch population 11 � 1010

Horizontal emittance 21.70
Vertical emittance 20.02
Momentum spread 4.68 � 10�4

Relativistic factor 480
Radius (km) 4.24291
Horizontal and vertical betatron tune 64.28, 59.31
Synchrotron tune 0.0059
Electron cloud density (cm�3) 6 � 105

Chromaticity x and y 2, 2
Phase slip factor 3.47 � 10�4

Horizontal and vertical box size (mm) 18, 18
Box length (mm) 2000
Total cell number 64 � 64 � 1024
Total beam particles 64 � 64 � 2048
e-Cloud particles per cell 2 � 2
3D time step (1/xp) 1.90059894561
Total simulated 3D time steps 2000
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4.2. Efficiency of the pipelining algorithm

Fig. 7(a) and (b) shows the comparison of the computational speedup between the pipelined and the original version of
QuickPIC for both the basic and full quasi-static modes respectively.

Simulations with the basic quasi-static mode version of QuickPIC for an electron cloud problem (see Fig. 7(a)) is per-
formed on computer clusters with a dual Intel P4 3.0 GHz processor on each node and interconnected with Ethernet and
Myrinet [12]. Both the pipelined and the original versions simulate 2000, 3D time steps using the same simulation param-
eters, as presented in Table 3. The number of grids in three-dimensions is set to 64:64:1024 in the x, y and z-direction,
respectively. The speedup of 4 processors running the original QuickPIC is normalized to 1, and is used as the baseline in
Fig. 7(a). As seen in Fig. 7(a), with the original QuickPIC, the computational speedup increases as the number of processors
is first increased, but this trend reverses when the number of processors reaches 16.

With the pipelining algorithm, on the other hand, when 16 processors are used, there is a 60% increase in speed compared
to the case of the original QuickPIC. Here subgroups contain 4 processors. For 2D calculation, instead of using 16 processors
for each slab, only 4 processors are used. The communication among 4 processors is much more time efficient compared to
that among 16 processors. Furthermore, as we keep increasing the number of subgroups, which proportionally increases the
total number of processors, the computation speedup continues to increase, and is proportional to the total number of pro-
cessors used for the pipelining code, up to 128 processors for this particular problem.

A similar trend of efficiency improvement is observed in the QuickPIC code in the full quasi-static mode for PWFA sim-
ulations (see Fig. 7(b)). A series of simulations are conducted with 8 processors in each subgroup and the number of sub-
groups varies from 1 to 128. The simulations are carried out on computer nodes with 2.6 GHz dual-core AMD Opteron
processor. All the computer nodes are connected to a high performance, low-latency SeaStar2 network [13]. The simulation
parameters are presented in Table 2 and the speedup of each simulation is plotted in Fig. 7(b) with the performance of the
baseline simulation (1 subgroup with 8 processors) normalized to 1. The overall speedup relative to the non-pipelined code
is not only a function of number of subgroups (with the number of processors in each subgroup held fixed) but also a func-
tion of the number of time steps; because there is a pipeline filling time and emptying time. When the number of time steps
is much greater than the number of subgroups, the speedup approaches the number of subgroups. In Fig. 7(b), the speedup is
calculated from the computational time of one 3D step for a particular subgroup. This would be the asymptotic value for the
speedup in a long-term simulation, for which the pipelining filling time and the emptying time can be ignored. More than
103 processors are used in the 128 subgroups simulation and the speedup of the simulation is increased by a proportional
factor. As a comparison, the baseline simulation is run with all processors in a single subgroup and the performance (blue
dots) rolls over quickly at fewer than 100 processors, as seen in Fig. 7(b).
5. Conclusion

We have described and implemented a novel parallel pipelining algorithm that allows the quasi-static code QuickPIC to
scale to well over 103 processors. The pipelining algorithm therefore can increase the effective speed of the QuickPIC code by
two to three orders of magnitude. The parallel scalability of the traditional QuickPIC code is limited by the number of pro-
cessors that can be used for 2D Poisson solvers, which is currently limited by the cost of the communication in the FFT. The
pipelining algorithm uses multiple subgroups of processors and optimizes the computing job allocation on them. The
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computing speed is shown to be proportionally increased as more processors are used for the simulation. The pipelining
algorithm reproduces the results obtain with the original version of the QuickPIC code, and therefore preserves the physics
included in the modeling while greatly reducing the simulation time.
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